A3.13 B3.21

Foundations of Quantum Mechanics
Part II, 2001

(i) Write the Hamiltonian for the harmonic oscillator,

H=p22m+12mω2x2H=\frac{p^{2}}{2 m}+\frac{1}{2} m \omega^{2} x^{2}

in terms of creation and annihilation operators, defined by

a=(mω2)12(xipmω),a=(mω2)12(x+ipmω)a^{\dagger}=\left(\frac{m \omega}{2 \hbar}\right)^{\frac{1}{2}}\left(x-i \frac{p}{m \omega}\right), \quad a=\left(\frac{m \omega}{2 \hbar}\right)^{\frac{1}{2}}\left(x+i \frac{p}{m \omega}\right)

Obtain an expression for [a,a]\left[a^{\dagger}, a\right] by using the usual commutation relation between pp and xx. Deduce the quantized energy levels for this system.

(ii) Define the number operator, NN, in terms of creation and annihilation operators, aa^{\dagger} and aa. The normalized eigenvector of NN with eigenvalue nn is n|n\rangle. Show that n0n \geq 0.

Determine ana|n\rangle and ana^{\dagger}|n\rangle in the basis defined by {n}\{|n\rangle\}.

Show that

amamn={n!(nm)!n,mn0,m>na^{\dagger m} a^{m}|n\rangle=\left\{\begin{aligned} \frac{n !}{(n-m) !}|n\rangle, & m \leq n \\ 0, & m>n \end{aligned}\right.

Verify the relation

00=m=01m!(1)mamam|0\rangle\langle 0|=\sum_{m=0} \frac{1}{m !}(-1)^{m} a^{\dagger m} a^{m}

by considering the action of both sides of the equation on an arbitrary basis vector.