A4.15 B4.22

Foundations of Quantum Mechanics
Part II, 2001

(i) The two states of a spin- 12\frac{1}{2} particle corresponding to spin pointing along the zz axis are denoted by |\uparrow\rangle and |\downarrow\rangle. Explain why the states

,θ=cosθ2+sinθ2,,θ=sinθ2+cosθ2|\uparrow, \theta\rangle=\cos \frac{\theta}{2}|\uparrow\rangle+\sin \frac{\theta}{2}|\downarrow\rangle, \quad \quad|\downarrow, \theta\rangle=-\sin \frac{\theta}{2}|\uparrow\rangle+\cos \frac{\theta}{2}|\downarrow\rangle

correspond to the spins being aligned along a direction at an angle θ\theta to the zz direction.

The spin- 0 state of two spin- 12\frac{1}{2} particles is

0=12(1212)|0\rangle=\frac{1}{\sqrt{2}}\left(|\uparrow\rangle_{1}|\downarrow\rangle_{2}-|\downarrow\rangle_{1}|\uparrow\rangle_{2}\right)

Show that this is independent of the direction chosen to define 1,2,1,2|\uparrow\rangle_{1,2},|\downarrow\rangle_{1,2}. If the spin of particle 1 along some direction is measured to be 12\frac{1}{2} \hbar show that the spin of particle 2 along the same direction is determined, giving its value.

[The Pauli matrices are given by

σ1=(0110),σ2=(0ii0),σ3=(1001)\sigma_{1}=\left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right), \quad \sigma_{2}=\left(\begin{array}{cc} 0 & -i \\ i & 0 \end{array}\right), \quad \sigma_{3}=\left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right)

(ii) Starting from the commutation relation for angular momentum in the form

[J3,J±]=±J±,[J+,J]=2J3,\left[J_{3}, J_{\pm}\right]=\pm \hbar J_{\pm}, \quad\left[J_{+}, J_{-}\right]=2 \hbar J_{3},

obtain the possible values of j,mj, m, where mm \hbar are the eigenvalues of J3J_{3} and j(j+1)2j(j+1) \hbar^{2} are the eigenvalues of J2=12(J+J+JJ+)+J32\mathbf{J}^{2}=\frac{1}{2}\left(J_{+} J_{-}+J_{-} J_{+}\right)+J_{3}^{2}. Show that the corresponding normalized eigenvectors, j,m|j, m\rangle, satisfy

J±j,m=((jm)(j±m+1))1/2j,m±1,J_{\pm}|j, m\rangle=\hbar((j \mp m)(j \pm m+1))^{1 / 2}|j, m \pm 1\rangle,

and that

1n!Jnj,j=n((2j)!n!(2jn)!)1/2j,jn,n2j\frac{1}{n !} J_{-}^{n}|j, j\rangle=\hbar^{n}\left(\frac{(2 j) !}{n !(2 j-n) !}\right)^{1 / 2}|j, j-n\rangle, \quad n \leq 2 j

The state w|w\rangle is defined by

w=ewJ/j,j|w\rangle=e^{w J_{-} / \hbar}|j, j\rangle

for any complex ww. By expanding the exponential show that ww=(1+w2)2j\langle w \mid w\rangle=\left(1+|w|^{2}\right)^{2 j}. Verify that

ewJ/J3ewJ/=J3wJe^{-w J_{-} / \hbar} J_{3} e^{w J_{-} / \hbar}=J_{3}-w J_{-}

and hence show that

J3w=(jww)wJ_{3}|w\rangle=\hbar\left(j-w \frac{\partial}{\partial w}\right)|w\rangle

If H=αJ3H=\alpha J_{3} verify that eiαteijαt\left|e^{i \alpha t}\right\rangle e^{-i j \alpha t} is a solution of the time-dependent Schrödinger equation.