B2.5

Combinatorics
Part II, 2001

As usual, Rk(r)(m)R_{k}^{(r)}(m) denotes the smallest integer nn such that every kk-colouring of [n](r)[n]^{(r)} yields a monochromatic mm-subset M[n](m)M \in[n]^{(m)}. Prove that R2(2)(m)>2m/2R_{2}^{(2)}(m)>2^{m / 2} for m3m \geqslant 3.

Let P([n])\mathcal{P}([n]) have the colex order, and for a,bP([n])a, b \in \mathcal{P}([n]) let δ(a,b)=maxab\delta(a, b)=\max a \triangle b; thus a<ba<b means δ(a,b)b\delta(a, b) \in b. Show that if a<b<ca<b<c then δ(a,b)δ(b,c)\delta(a, b) \neq \delta(b, c), and that δ(a,c)=max{δ(a,b),δ(b,c)}.\delta(a, c)=\max \{\delta(a, b), \delta(b, c)\} .

Given a red-blue colouring of [n](2)[n]^{(2)}, the 4 -colouring

χ:P([n])(3){ red, blue }×{0,1}\chi: \mathcal{P}([n])^{(3)} \rightarrow\{\text { red, blue }\} \times\{0,1\}

is defined as follows:

χ({a,b,c})={( red, 0) if {δ(a,b),δ(b,c)} is red and δ(a,b)<δ(b,c)( red ,1) if {δ(a,b),δ(b,c)} is red and δ(a,b)>δ(b,c)( blue, 0) if {δ(a,b),δ(b,c)} is blue and δ(a,b)<δ(b,c) (blue, 1) if {δ(a,b),δ(b,c)} is blue and δ(a,b)>δ(b,c)\chi(\{a, b, c\})= \begin{cases}(\text { red, } 0) & \text { if }\{\delta(a, b), \delta(b, c)\} \text { is red and } \delta(a, b)<\delta(b, c) \\ (\text { red }, 1) & \text { if }\{\delta(a, b), \delta(b, c)\} \text { is red and } \delta(a, b)>\delta(b, c) \\ (\text { blue, } 0) & \text { if }\{\delta(a, b), \delta(b, c)\} \text { is blue and } \delta(a, b)<\delta(b, c) \\ \text { (blue, } 1) & \text { if }\{\delta(a, b), \delta(b, c)\} \text { is blue and } \delta(a, b)>\delta(b, c)\end{cases}

where a<b<ca<b<c. Show that if M={a0,a1,,am}P([n])(m+1)M=\left\{a_{0}, a_{1}, \ldots, a_{m}\right\} \in \mathcal{P}([n])^{(m+1)} is monochromatic then {δ1,,δm}[n](m)\left\{\delta_{1}, \ldots, \delta_{m}\right\} \in[n]^{(m)} is monochromatic, where δi=δ(ai1,ai)\delta_{i}=\delta\left(a_{i-1}, a_{i}\right) and a0<a1<<ama_{0}<a_{1}<\cdots<a_{m}.

Deduce that R4(3)(m+1)>22m/2R_{4}^{(3)}(m+1)>2^{2^{m / 2}} for m3m \geqslant 3.