B4.2

Representation Theory
Part II, 2001

Let GG be the Heisenberg group of order p3p^{3}. This is the subgroup

G={(1ax01b001)a,b,xFp}G=\left\{\left(\begin{array}{ccc} 1 & a & x \\ 0 & 1 & b \\ 0 & 0 & 1 \end{array}\right) \mid a, b, x \in \mathbf{F}_{p}\right\}

of 3×33 \times 3 matrices over the finite field Fp\mathbf{F}_{p} ( pp prime). Let HH be the subgroup of GG of such matrices with a=0a=0.

(i) Find all one dimensional representations of GG.

[You may assume without proof that [G,G][G, G] is equal to the set of matrices in GG with a=b=0.]a=b=0 .]

(ii) Let ψ:Fp=Z/pZC\psi: \mathbf{F}_{p}=\mathbf{Z} / p \mathbf{Z} \longrightarrow \mathbf{C}^{*} be a non-trivial one dimensional representation of Fp\mathbf{F}_{p}, and define a one dimensional representation ρ\rho of HH by

ρ(10x01b001)=ψ(x)\rho\left(\begin{array}{lll} 1 & 0 & x \\ 0 & 1 & b \\ 0 & 0 & 1 \end{array}\right)=\psi(x)

Show that Vψ=IndHG(ρ)V_{\psi}=\operatorname{Ind}_{H}^{G}(\rho) is irreducible.

(iii) List all the irreducible representations of GG and explain why your list is complete.