B1.9

Number Fields
Part II, 2001

Let K=Q(α)K=\mathbf{Q}(\alpha) be a number field, where αOK\alpha \in \mathcal{O}_{K}. Let ff be the (normalized) minimal polynomial of α\alpha over QQ. Show that the discriminant disc(f)\operatorname{disc}(f) of ff is equal to (OK:Z[α])2DK\left(\mathcal{O}_{K}: \mathbf{Z}[\alpha]\right)^{2} D_{K}.

Show that f(x)=x3+5x219f(x)=x^{3}+5 x^{2}-19 is irreducible over Q. Determine disc(f)\operatorname{disc}(f) and the ring of algebraic integers OK\mathcal{O}_{K} of K=Q(α)K=\mathbf{Q}(\alpha), where αC\alpha \in \mathbf{C} is a root of ff.