B2.9

Number Fields
Part II, 2002

Let K=Q(35)K=\mathbb{Q}(\sqrt{35}). By Dedekind's theorem, or otherwise, show that the ideal equations

2=[2,ω]2,5=[5,ω]2,[ω]=[2,ω][5,ω]2=[2, \omega]^{2}, \quad 5=[5, \omega]^{2}, \quad[\omega]=[2, \omega][5, \omega]

hold in KK, where ω=5+35\omega=5+\sqrt{35}. Deduce that KK has class number 2 .

Verify that 1+ω1+\omega is the fundamental unit in KK. Hence show that the complete solution in integers x,yx, y of the equation x235y2=10x^{2}-35 y^{2}=-10 is given by

x+35y=±ω(1+ω)n(n=0,±1,±2,).x+\sqrt{35} y=\pm \omega(1+\omega)^{n} \quad(n=0, \pm 1, \pm 2, \ldots) .

Calculate the particular solution x,yx, y for n=1n=1.

[It can be assumed that the Minkowski constant for KK is 12\frac{1}{2}.]