B1.10

Hilbert Spaces
Part II, 2002

Let HH be a Hilbert space and let TB(H)T \in \mathcal{B}(H). Define what it means for TT to be bounded below. Prove that, if LT=IL T=I for some LB(H)L \in \mathcal{B}(H), then TT is bounded below.

Prove that an operator TB(H)T \in \mathcal{B}(H) is invertible if and only if both TT and TT^{*} are bounded below.

Let HH be the sequence space 2\ell^{2}. Define the operators S,RS, R on HH by setting

S(ξ)=(0,ξ1,ξ2,ξ3,),R(ξ)=(ξ2,ξ3,ξ4,),S(\xi)=\left(0, \xi_{1}, \xi_{2}, \xi_{3}, \ldots\right), \quad R(\xi)=\left(\xi_{2}, \xi_{3}, \xi_{4}, \ldots\right),

for all ξ=(ξ1,ξ2,ξ3,)2\xi=\left(\xi_{1}, \xi_{2}, \xi_{3}, \ldots\right) \in \ell^{2}. Check that RS=IR S=I but SRIS R \neq I. Let D={λC:λ<D=\{\lambda \in \mathbb{C}:|\lambda|< 1}1\}. For each λD\lambda \in D, explain why IλRI-\lambda R is invertible, and define

R(λ)=(IλR)1RR(\lambda)=(I-\lambda R)^{-1} R

Show that, for all λD\lambda \in D, we have R(λ)(SλI)=IR(\lambda)(S-\lambda I)=I, but (SλI)R(λ)I(S-\lambda I) R(\lambda) \neq I. Deduce that, for all λD\lambda \in D, the operator SλIS-\lambda I is bounded below, but is not invertible. Deduce also that SpS={λC:λ1}\operatorname{Sp} S=\{\lambda \in \mathbb{C}:|\lambda| \leqslant 1\}.

Let λC\lambda \in \mathbb{C} with λ=1|\lambda|=1, and for n=1,2,n=1,2, \ldots, define the element xnx_{n} of 2\ell^{2} by

xn=n1/2(λ1,λ2,,λn,0,0,).x_{n}=n^{-1 / 2}\left(\lambda^{-1}, \lambda^{-2}, \ldots, \lambda^{-n}, 0,0, \ldots\right) .

Prove that xn=1\left\|x_{n}\right\|=1 but that (SλI)xn0(S-\lambda I) x_{n} \rightarrow 0 as nn \rightarrow \infty. Deduce that, for λ=1,SλI|\lambda|=1, S-\lambda I is not bounded below.