B3.9

Riemann Surfaces
Part II, 2002

Let α1,α2\alpha_{1}, \alpha_{2} be two non-zero complex numbers with α1/α2R\alpha_{1} / \alpha_{2} \notin \mathbb{R}. Let LL be the lattice Zα1Zα2C\mathbb{Z} \alpha_{1} \oplus \mathbb{Z} \alpha_{2} \subset \mathbb{C}. A meromorphic function ff on C\mathbb{C} is elliptic if f(z+λ)=f(z)f(z+\lambda)=f(z), for all zCz \in \mathbb{C} and λL\lambda \in L. The Weierstrass functions (z),ζ(z),σ(z)\wp(z), \zeta(z), \sigma(z) are defined by the following properties:

  • (z)\wp(z) is elliptic, has double poles at the points of LL and no other poles, and (z)=\wp(z)= 1/z2+O(z2)1 / z^{2}+O\left(z^{2}\right) near 0

  • ζ(z)=(z)\zeta^{\prime}(z)=-\wp(z), and ζ(z)=1/z+O(z3)\zeta(z)=1 / z+O\left(z^{3}\right) near 0 ;

  • σ(z)\sigma(z) is odd, and σ(z)/σ(z)=ζ(z)\sigma^{\prime}(z) / \sigma(z)=\zeta(z), and σ(z)/z1\sigma(z) / z \rightarrow 1 as z0z \rightarrow 0.

Prove the following

(a) \wp, and hence ζ\zeta and σ\sigma, are uniquely determined by these properties. You are not expected to prove the existence of ,ζ,σ\wp, \zeta, \sigma, and you may use Liouville's theorem without proof.

(b) ζ(z+αi)=ζ(z)+2ηi\zeta\left(z+\alpha_{i}\right)=\zeta(z)+2 \eta_{i}, and σ(z+αi)=kie2ηizσ(z)\sigma\left(z+\alpha_{i}\right)=k_{i} e^{2 \eta_{i} z} \sigma(z), for some constants ηi,ki(i=1,2)\eta_{i}, k_{i}(i=1,2).

(c) σ\sigma is holomorphic, has simple zeroes at the points of LL, and has no other zeroes.

(d) Given a1,,ana_{1}, \ldots, a_{n} and b1,,bnb_{1}, \ldots, b_{n} in C\mathbb{C} with a1++an=b1++bna_{1}+\ldots+a_{n}=b_{1}+\ldots+b_{n}, the function

σ(za1)σ(zan)σ(zb1)σ(zbn)\frac{\sigma\left(z-a_{1}\right) \cdots \sigma\left(z-a_{n}\right)}{\sigma\left(z-b_{1}\right) \cdots \sigma\left(z-b_{n}\right)}

is elliptic.

(e) (u)(v)=σ(u+v)σ(uv)σ2(u)σ2(v)\wp(u)-\wp(v)=-\frac{\sigma(u+v) \sigma(u-v)}{\sigma^{2}(u) \sigma^{2}(v)}.

(f) Deduce from (e), or otherwise, that 12(u)(v)(u)(v)=ζ(u+v)ζ(u)ζ(v)\frac{1}{2} \frac{\wp^{\prime}(u)-\wp^{\prime}(v)}{\wp(u)-\wp(v)}=\zeta(u+v)-\zeta(u)-\zeta(v).