B1.13

Probability and Measure
Part II, 2002

State and prove Dynkin's π\pi-system lemma.

Let (Ω,F,P)(\Omega, \mathcal{F}, \mathbb{P}) be a probability space and let (An)\left(A_{n}\right) be a sequence of independent events such that limnP(An)=p\lim _{n \rightarrow \infty} \mathbb{P}\left(A_{n}\right)=p. Let G=σ(A1,A2,)\mathcal{G}=\sigma\left(A_{1}, A_{2}, \ldots\right). Prove that

limnP(GAn)=pP(G)\lim _{n \rightarrow \infty} \mathbb{P}\left(G \cap A_{n}\right)=p \mathbb{P}(G)

for all GGG \in \mathcal{G}.