(i) Suppose Y1,…,Yn are independent Poisson variables, and
E(Yi)=μi,logμi=α+βTxi,1⩽i⩽n
where α,β are unknown parameters, and x1,…,xn are given covariates, each of dimension p. Obtain the maximum-likelihood equations for α,β, and explain briefly how you would check the validity of this model.
(ii) The data below show y1,…,y33, which are the monthly accident counts on a major US highway for each of the 12 months of 1970 , then for each of the 12 months of 1971 , and finally for the first 9 months of 1972 . The data-set is followed by the (slightly edited) R output. You may assume that the factors 'Year' and 'month' have been set up in the appropriate fashion. Give a careful interpretation of this R output, and explain (a) how you would derive the corresponding standardised residuals, and (b) how you would predict the number of accidents in October 1972 .
523533372226492731292725313423322320284225343020323636395650486340
> first.glm −glm(y∼ Year + month, poisson ); summary(first.glm )
Call:
glm( formula =y∼ Year + month, family = poisson )
\begin{tabular}{lrlll} Coefficients: & & & & \ (Intercept) & Estimate & Std. Error & \multicolumn{1}{l}{ z value } & Pr(>∣z∣) \ Year1971 & −0.81969 & 0.09896 & 38.600 & <2e−16 \ Year1972 & −0.28794 & 0.08267 & −3.483 & 0.000496 \ month2 & −0.34484 & 0.14176 & −2.433 & 0.014994 \ month3 & −0.11466 & 0.13296 & −0.862 & 0.388459 \ month4 & −0.39304 & 0.14380 & −2.733 & 0.006271 \ month5 & −0.31015 & 0.14034 & −2.210 & 0.027108 \ month6 & −0.47000 & 0.14719 & −3.193 & 0.001408 \ month7 & −0.23361 & 0.13732 & −1.701 & 0.088889 \ month8 & −0.35667 & 0.14226 & −2.507 & 0.012168 \ month9 & −0.14310 & 0.13397 & −1.068 & 0.285444 \ month10 & 0.10167 & 0.13903 & 0.731 & 0.464628 \ month11 & 0.13276 & 0.13788 & 0.963 & 0.335639 \ month12 & 0.18252 & 0.13607 & 1.341 & 0.179812 \end{tabular}
Signif. codes: 0 (, 0.001 (, 0.01 (, 0.05 '.
(Dispersion parameter for poisson family taken to be 1 )
Null deviance: Residual deviance: 101.14327.273 on 32 degrees of freedom on 19 degrees of freedom
Number of Fisher Scoring iterations: 3