A1.14

Quantum Physics
Part II, 2002

(i) A system of NN identical non-interacting bosons has energy levels EiE_{i} with degeneracy gi,1i<g_{i}, 1 \leq i<\infty, for each particle. Show that in thermal equilibrium the number of particles NiN_{i} with energy EiE_{i} is given by

Ni=gieβ(Eiμ)1N_{i}=\frac{g_{i}}{e^{\beta\left(E_{i}-\mu\right)}-1}

where β\beta and μ\mu are parameters whose physical significance should be briefly explained.

(ii) A photon moves in a cubical box of side LL. Assuming periodic boundary conditions, show that, for large LL, the number of photon states lying in the frequency range ωω+dω\omega \rightarrow \omega+d \omega is ρ(ω)dω\rho(\omega) d \omega where

ρ(ω)=L3(ω2π2c3)\rho(\omega)=L^{3}\left(\frac{\omega^{2}}{\pi^{2} c^{3}}\right)

If the box is filled with thermal radiation at temperature TT, show that the number of photons per unit volume in the frequency range ωω+dω\omega \rightarrow \omega+d \omega is n(ω)dωn(\omega) d \omega where

n(ω)=(ω2π2c3)1eω/kT1.n(\omega)=\left(\frac{\omega^{2}}{\pi^{2} c^{3}}\right) \frac{1}{e^{\hbar \omega / k T}-1} .

Calculate the energy density WW of the thermal radiation. Show that the pressure PP exerted on the surface of the box satisfies

P=13WP=\frac{1}{3} W

[You may use the result 0x3dxex1=π415\int_{0}^{\infty} \frac{x^{3} d x}{e^{x}-1}=\frac{\pi^{4}}{15}.]