A3.14
(i) Write down the first law of thermodynamics for the change in the internal energy of a gas of particles in a volume with entropy .
Given that
where is the pressure, use the first law to show that is constant at constant and
Write down the Boyle-Charles law for a non-relativistic ideal gas and hence deduce that the temperature is proportional to at constant and .
State the principle of equipartition of energy and use it to deduce that
Hence deduce the value of . Show that this value of is such that the ratio is unchanged by a change of volume at constant and , where is the energy of the -th one particle eigenstate of a non-relativistic ideal gas.
(ii) A classical gas of non-relativistic particles of mass at absolute temperature and number density has a chemical potential
where is the particle's spin degeneracy factor. What condition on is needed for the validity of this formula and why?
Thermal and chemical equilibrium between two species of non-relativistic particles and is maintained by the reaction
where and are massless particles with zero chemical potential. Given that particles and have masses and respectively, but equal spin degeneracy factors, find the number density ratio as a function of and . Given that but show that
for some function which you should determine.
Explain how a reaction of the above type is relevant to a determination of the neutron to proton ratio in the early universe and why this ratio does not fall rapidly to zero as the universe cools. Explain briefly the process of primordial nucleosynthesis by which neutrons are converted into stable helium nuclei. Let
be the fraction of the universe that ends up in helium. Compute as a function of the ratio at the time of nucleosynthesis.