A2.8

Graph Theory
Part II, 2002

(i) Define the chromatic polynomial p(G;t)p(G ; t) of the graph GG, and establish the standard identity

p(G;t)=p(Ge;t)p(G/e;t),p(G ; t)=p(G-e ; t)-p(G / e ; t),

where ee is an edge of GG. Deduce that, if GG has nn vertices and mm edges, then

p(G;t)=antnan1tn1+an2tn2++(1)na0,p(G ; t)=a_{n} t^{n}-a_{n-1} t^{n-1}+a_{n-2} t^{n-2}+\ldots+(-1)^{n} a_{0},

where an=1,an1=ma_{n}=1, a_{n-1}=m and aj0a_{j} \geq 0 for 0jn0 \leq j \leq n.

(ii) Let GG and p(G;t)p(G ; t) be as in Part (i). Show that if GG has kk components G1,,GkG_{1}, \ldots, G_{k} then p(G;t)=i=1kp(Gi;t)p(G ; t)=\prod_{i=1}^{k} p\left(G_{i} ; t\right). Deduce that ak>0a_{k}>0 and aj=0a_{j}=0 for 0j<k0 \leq j<k.

Show that if GG is a tree then p(G;t)=t(t1)n1p(G ; t)=t(t-1)^{n-1}. Must the converse hold? Justify your answer.

Show that if p(G;t)=p(Tr(n);t)p(G ; t)=p\left(T_{r}(n) ; t\right), where Tr(n)T_{r}(n) is a Turán graph, then G=Tr(n)G=T_{r}(n).