A1.2 B1.2

Principles of Dynamics
Part II, 2002

(i) Derive Hamilton's equations from Lagrange's equations. Show that the Hamiltonian HH is constant if the Lagrangian LL does not depend explicitly on time.

(ii) A particle of mass mm is constrained to move under gravity, which acts in the negative zz-direction, on the spheroidal surface ϵ2(x2+y2)+z2=l2\epsilon^{-2}\left(x^{2}+y^{2}\right)+z^{2}=l^{2}, with 0<ϵ10<\epsilon \leqslant 1. If θ,ϕ\theta, \phi parametrize the surface so that

x=ϵlsinθcosϕ,y=ϵlsinθsinϕ,z=lcosθ,x=\epsilon l \sin \theta \cos \phi, y=\epsilon l \sin \theta \sin \phi, z=l \cos \theta,

find the Hamiltonian H(θ,ϕ,pθ,pϕ)H\left(\theta, \phi, p_{\theta}, p_{\phi}\right).

Show that the energy

E=pθ22ml2(ϵ2cos2θ+sin2θ)+αsin2θ+mglcosθE=\frac{p_{\theta}^{2}}{2 m l^{2}\left(\epsilon^{2} \cos ^{2} \theta+\sin ^{2} \theta\right)}+\frac{\alpha}{\sin ^{2} \theta}+m g l \cos \theta

is a constant of the motion, where α\alpha is a non-negative constant.

Rewrite this equation as

12θ˙2+Veff(θ)=0\frac{1}{2} \dot{\theta}^{2}+V_{\mathrm{eff}}(\theta)=0

and sketch Veff(θ)V_{\mathrm{eff}}(\theta) for ϵ=1\epsilon=1 and α>0\alpha>0, identifying the maximal and minimal values of θ(t)\theta(t) for fixed α\alpha and EE. If ϵ\epsilon is now taken not to be unity, how do these values depend on ϵ\epsilon ?