A3.2

Principles of Dynamics
Part II, 2002

(i) Show that Hamilton's equations follow from the variational principle

δt1t2[pq˙H(q,p,t)]dt=0\delta \int_{t_{1}}^{t_{2}}[p \dot{q}-H(q, p, t)] d t=0

under the restrictions δq(t1)=δq(t2)=δp(t1)=δp(t2)=0\delta q\left(t_{1}\right)=\delta q\left(t_{2}\right)=\delta p\left(t_{1}\right)=\delta p\left(t_{2}\right)=0. Comment on the difference from the variational principle for Lagrange's equations.

(ii) Suppose we transform from pp and qq to p=p(q,p,t)p^{\prime}=p^{\prime}(q, p, t) and q=q(q,p,t)q^{\prime}=q^{\prime}(q, p, t), with

pq˙H=pq˙H+ddtF(q,p,q,p,t)p^{\prime} \dot{q}^{\prime}-H^{\prime}=p \dot{q}-H+\frac{\mathrm{d}}{\mathrm{d} t} F\left(q, p, q^{\prime}, p^{\prime}, t\right)

where HH^{\prime} is the new Hamiltonian. Show that pp^{\prime} and qq^{\prime} obey Hamilton's equations with Hamiltonian HH^{\prime}.

Show that the time independent generating function F=F1(q,q)=q/qF=F_{1}\left(q, q^{\prime}\right)=q^{\prime} / q takes the Hamiltonian

H=12q2+12p2q4H=\frac{1}{2 q^{2}}+\frac{1}{2} p^{2} q^{4}

to harmonic oscillator form. Show that qq^{\prime} and pp^{\prime} obey the Poisson bracket relation

{q,p}=1\left\{q^{\prime}, p^{\prime}\right\}=1