A B
Part II, 2002
(i) Show that, in a region where there is no magnetic field and the charge density vanishes, the electric field can be expressed either as minus the gradient of a scalar potential or as the curl of a vector potential A. Verify that the electric field derived from
is that of an electrostatic dipole with dipole moment .
[You may assume the following identities:
(ii) An infinite conducting cylinder of radius is held at zero potential in the presence of a line charge parallel to the axis of the cylinder at distance , with charge density per unit length. Show that the electric field outside the cylinder is equivalent to that produced by replacing the cylinder with suitably chosen image charges.