A3.8 B3.11

Logic, Computation and Set Theory
Part II, 2002

(i) Explain briefly what is meant by the terms register machine and computable function.

Let uu be the universal computable function u(m,n)=fm(n)u(m, n)=f_{m}(n) and ss a total computable function with fs(m,n)(k)=fm(n,k)f_{s(m, n)}(k)=f_{m}(n, k). Here fm(n)f_{m}(n) and fm(n,k)f_{m}(n, k) are the unary and binary functions computed by the mm-th register machine program PmP_{m}. Suppose h:NNh: \mathbb{N} \rightarrow \mathbb{N} is a total computable function. By considering the function

g(m,n)=u(h(s(m,m)),n)g(m, n)=u(h(s(m, m)), n)

show that there is a number aa such that fa=fh(a)f_{a}=f_{h(a)}.

(ii) Let PP be the set of all partial functions N×NN\mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}. Consider the mapping Φ:PP\Phi: P \rightarrow P defined by

Φ(g)(m,n)={n+1 if m=0,g(m1,1) if m>0,n=0 and g(m1,1) defined g(m1,g(m,n1)) if mn>0 and g(m1,g(m,n1)) defined , undefined  otherwise. \Phi(g)(m, n)= \begin{cases}n+1 & \text { if } m=0, \\ g(m-1,1) & \text { if } m>0, n=0 \text { and } g(m-1,1) \text { defined } \\ g(m-1, g(m, n-1)) & \text { if } m n>0 \text { and } g(m-1, g(m, n-1)) \text { defined }, \\ \text { undefined } & \text { otherwise. }\end{cases}

(a) Show that any fixed point of Φ\Phi is a total function N×NN\mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}. Deduce that Φ\Phi has a unique fixed point.

[The Bourbaki- Witt Theorem may be assumed if stated precisely.]

(b) It follows from standard closure properties of the computable functions that there is a computable function ψ\psi such that

ψ(p,m,n)=Φ(fp)(m,n).\psi(p, m, n)=\Phi\left(f_{p}\right)(m, n) .

Assuming this, show that there is a total computable function hh such that

Φ(fp)=fh(p) for all p.\Phi\left(f_{p}\right)=f_{h(p)} \text { for all } p .

Deduce that the fixed point of Φ\Phi is computable.