A2.15 B2.23

General Relativity
Part II, 2002

(i) Consider the line element describing the interior of a star,

ds2=e2α(r)dr2+r2(dθ2+sin2θdϕ2)e2γ(r)dt2,d s^{2}=e^{2 \alpha(r)} d r^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)-e^{2 \gamma(r)} d t^{2},

defined for 0rr00 \leq r \leq r_{0} by

e2α(r)=1Ar2e^{-2 \alpha(r)}=1-A r^{2}

and

eγ(r)=32eα012eα(r)e^{\gamma(r)}=\frac{3}{2} e^{-\alpha_{0}}-\frac{1}{2} e^{-\alpha(r)}

Here A=2M/r03,MA=2 M / r_{0}^{3}, M is the mass of the star, and α0\alpha_{0} is defined to be α(r0)\alpha\left(r_{0}\right).

The star is made of a perfect fluid with energy-momentum tensor

Tab=(p+ρ)uaub+pgab.T_{a b}=(p+\rho) u_{a} u_{b}+p g_{a b} .

Here uau^{a} is the 4 -velocity of the fluid which is at rest, the density ρ\rho is constant throughout the star (0rr0)\left(0 \leq r \leq r_{0}\right) and the pressure p=p(r)p=p(r) depends only on the radial coordinate. Write down the Einstein field equations and show that (in geometrical units with G=c=1G=c=1 ) they may equivalently be written as

Rab=8π(p+ρ)uaub+4π(pρ)gab.R_{a b}=8 \pi(p+\rho) u_{a} u_{b}+4 \pi(p-\rho) g_{a b} .

(ii) Using the formulae below, or otherwise, show that for 0rr00 \leq r \leq r_{0} one has

ρ=3A8π,p(r)=3A8π(eα(r)eα03eα0eα(r))\rho=\frac{3 A}{8 \pi}, \quad p(r)=\frac{3 A}{8 \pi}\left(\frac{e^{-\alpha(r)}-e^{-\alpha_{0}}}{3 e^{-\alpha_{0}}-e^{-\alpha(r)}}\right)

[The non-zero components of the Ricci tensor are:

R11=γ+αγγ2+2αr,R22=e2α[(αγ)r1]+1R33=sin2θR22,R44=e2γ2α[γαγ+γ2+2γr]\begin{gathered} R_{11}=-\gamma^{\prime \prime}+\alpha^{\prime} \gamma^{\prime}-\gamma^{\prime 2}+\frac{2 \alpha^{\prime}}{r}, \quad R_{22}=e^{-2 \alpha}\left[\left(\alpha^{\prime}-\gamma^{\prime}\right) r-1\right]+1 \\ R_{33}=\sin ^{2} \theta R_{22}, \quad R_{44}=e^{2 \gamma-2 \alpha}\left[\gamma^{\prime \prime}-\alpha^{\prime} \gamma^{\prime}+\gamma^{\prime 2}+\frac{2 \gamma^{\prime}}{r}\right] \end{gathered}

Note that

α=Are2α,γ=12Areαγ,γ=12Aeαγ+12A2r2e3αγ14A2r2e2α2γ ] ] \alpha^{\prime}=A r e^{2 \alpha}, \quad \gamma^{\prime}=\frac{1}{2} A r e^{\alpha-\gamma}, \quad \gamma^{\prime \prime}=\frac{1}{2} A e^{\alpha-\gamma}+\frac{1}{2} A^{2} r^{2} e^{3 \alpha-\gamma}-\frac{1}{4} A^{2} r^{2} e^{2 \alpha-2 \gamma} \text { ] ] }