B3.8

Hilbert Spaces
Part II, 2003

Let H\mathcal{H} be the space of all functions on the real line R\mathbb{R} of the form p(x)ex2/2p(x) e^{-x^{2} / 2}, where pp is a polynomial with complex coefficients. Make H\mathcal{H} into an inner-product space, in the usual way, by defining the inner product to be

f,g=f(t)g(t)dt,f,gH\langle f, g\rangle=\int_{-\infty}^{\infty} f(t) \overline{g(t)} d t, \quad f, g \in \mathcal{H}

You should assume, without proof, that this equation does define an inner product on H\mathcal{H}. Define the norm by f2=f,f1/2\|f\|_{2}=\langle f, f\rangle^{1 / 2} for fHf \in \mathcal{H}. Now define a sequence of functions (Fn)n0\left(F_{n}\right)_{n \geqslant 0} on R\mathbb{R} by

Fn(x)=(1)nex2/2dndxnex2F_{n}(x)=(-1)^{n} e^{x^{2} / 2} \frac{d^{n}}{d x^{n}} e^{-x^{2}}

Prove that (Fn)\left(F_{n}\right) is an orthogonal sequence in H\mathcal{H} and that it spans H\mathcal{H}.

For every fHf \in \mathcal{H} define the Fourier transform f^\widehat{f} of ff by

f^(t)=12πf(x)eitxdx,tR\widehat{f}(t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) e^{-i t x} d x, \quad t \in \mathbb{R}

Show that

(a) F^n=(i)nFn\widehat{F}_{n}=(-i)^{n} F_{n} for n=0,1,2,n=0,1,2, \ldots;

(b) for all fHf \in \mathcal{H} and xRx \in \mathbb{R},

f^^(x)=f(x)\widehat{\widehat{f}}(x)=f(-x)

(c) f^2=f2\|\widehat{f}\|_{2}=\|f\|_{2} for all fHf \in \mathcal{H}.