B4.8

Riemann Surfaces
Part II, 2003

(a) Define the degree degf\operatorname{deg} f of a meromorphic function on the Riemann sphere P1\mathbb{P}^{1}. State the Riemann-Hurwitz theorem.

Let ff and gg be two rational functions on the sphere P1\mathbb{P}^{1}. Show that

deg(f+g)degf+degg\operatorname{deg}(f+g) \leqslant \operatorname{deg} f+\operatorname{deg} g

Deduce that

degfdeggdeg(f+g)degf+degg.|\operatorname{deg} f-\operatorname{deg} g| \leqslant \operatorname{deg}(f+g) \leqslant \operatorname{deg} f+\operatorname{deg} g .

(b) Describe the topological type of the Riemann surface defined by the equation w2+2w=z5w^{2}+2 w=z^{5} in C2\mathbb{C}^{2}. [You should analyse carefully the behaviour as ww and zz approach \infty.]