B1.13

Probability and Measure
Part II, 2003

State and prove the first Borel-Cantelli Lemma.

Suppose that (Fn)\left(F_{n}\right) is a sequence of events in a common probability space such that P(FiFj)P(Fi)P(Fj)\mathbb{P}\left(F_{i} \cap F_{j}\right) \leqslant \mathbb{P}\left(F_{i}\right) \cdot \mathbb{P}\left(F_{j}\right) whenever iji \neq j and that nP(Fn)=\sum_{n} \mathbb{P}\left(F_{n}\right)=\infty.

Let 1Fn1_{F_{n}} be the indicator function of FnF_{n} and let

Sn=kn1Fk;μn=E(Sn)S_{n}=\sum_{k \leqslant n} 1_{F_{k}} ; \mu_{n}=\mathbb{E}\left(S_{n}\right)

Use Chebyshev's inequality to show that

P(Sn<12μn)P(Snμn>12μn)4μn\mathbb{P}\left(S_{n}<\frac{1}{2} \mu_{n}\right) \leqslant \mathbb{P}\left(\left|S_{n}-\mu_{n}\right|>\frac{1}{2} \mu_{n}\right) \leqslant \frac{4}{\mu_{n}}

Deduce, using the first Borel-Cantelli Lemma, that P(Fn\mathbb{P}\left(F_{n}\right. infinitely often )=1)=1.