B2.14

Information Theory
Part II, 2003

Let X\mathcal{X} be a binary linear code of length nn, rank kk and distance dd. Let x=x= (x1,,xn)X\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{X} be a codeword with exactly dd non-zero digits.

(a) Prove that nd+k1n \geqslant d+k-1 (the Singleton bound).

(b) Prove that truncating X\mathcal{X} on the non-zero digits of xx produces a code X\mathcal{X}^{\prime} of length ndn-d, rank k1k-1 and distance dd^{\prime} for some dd2d^{\prime} \geqslant\left\lceil\frac{d}{2}\right\rceil. Here a\lceil a\rceil is the integer satisfying aa<a+1,aRa \leqslant\lceil a\rceil<a+1, a \in \mathbb{R}.

[Hint: Assume the opposite. Then, given yXy \in \mathcal{X} and its truncation yXy^{\prime} \in \mathcal{X}^{\prime}, consider the coordinates where xx and yy have 1 in common (i.e. xj=yj=1x_{j}=y_{j}=1 ) and where they differ (\left(\right. e.g. xj=1x_{j}=1 and yj=0)\left.y_{j}=0\right).]

(c) Deduce that nd+1k1d2n \geqslant d+\sum_{1 \leqslant \ell \leqslant k-1}\left\lceil\frac{d}{2^{\ell}}\right\rceil (an improved Singleton bound).