B1.19Methods of Mathematical PhysicsPart II, 2003By considering the integral∫C(t1−t)idt\int_{C}\left(\frac{t}{1-t}\right)^{i} d t∫C(1−tt)idtwhere CCC is a large circle centred on the origin, show thatB(1+i,1−i)=πcosechπB(1+i, 1-i)=\pi \operatorname{cosech} \piB(1+i,1−i)=πcosechπwhereB(p,q)=∫01tp−1(1−t)q−1dt,Re(p)>0,Re(q)>0B(p, q)=\int_{0}^{1} t^{p-1}(1-t)^{q-1} d t, \operatorname{Re}(p)>0, \operatorname{Re}(q)>0B(p,q)=∫01tp−1(1−t)q−1dt,Re(p)>0,Re(q)>0By using B(p,q)=Γ(p)Γ(q)Γ(p+q)B(p, q)=\frac{\Gamma(p) \Gamma(q)}{\Gamma(p+q)}B(p,q)=Γ(p+q)Γ(p)Γ(q), deduce that Γ(i)Γ(−i)=πcosechπ\Gamma(i) \Gamma(-i)=\pi \operatorname{cosech} \piΓ(i)Γ(−i)=πcosechπ.