B1.23

Applications of Quantum Mechanics
Part II, 2003

Define the differential cross section dσdΩ\frac{d \sigma}{d \Omega}. Show how it may be related to a scattering amplitude ff defined in terms of the behaviour of a wave function ψ\psi satisfying suitable boundary conditions as r=rr=|\mathbf{r}| \rightarrow \infty.

For a particle scattering off a potential V(r)V(r) show how f(θ)f(\theta), where θ\theta is the scattering angle, may be expanded, for energy E=2k2/2mE=\hbar^{2} k^{2} / 2 m, as

f(θ)==0f(k)P(cosθ),f(\theta)=\sum_{\ell=0}^{\infty} f_{\ell}(k) P_{\ell}(\cos \theta),

and find f(k)f_{\ell}(k) in terms of the phase shift δ(k)\delta_{\ell}(k). Obtain the optical theorem relating σtotal \sigma_{\text {total }} and f(0)f(0).

Suppose that

e2iδ1=EE012iΓEE0+12iΓe^{2 i \delta_{1}}=\frac{E-E_{0}-\frac{1}{2} i \Gamma}{E-E_{0}+\frac{1}{2} i \Gamma}

Why for EE0E \approx E_{0} may f1(k)f_{1}(k) be dominant, and what is the expected behaviour of dσdΩ\frac{d \sigma}{d \Omega} for EE0E \approx E_{0} ?

[For large rr

eikrcosθ12ikr=0(2+1)((1)+1eikr+eikr)P(cosθ)e^{i k r \cos \theta} \sim \frac{1}{2 i k r} \sum_{\ell=0}^{\infty}(2 \ell+1)\left((-1)^{\ell+1} e^{-i k r}+e^{i k r}\right) P_{\ell}(\cos \theta)

Legendre polynomials satisfy

11P(t)P(t)dt=22+1δ]\left.\int_{-1}^{1} P_{\ell}(t) P_{\ell^{\prime}}(t) d t=\frac{2}{2 \ell+1} \delta_{\ell \ell^{\prime}} \cdot\right]