B3.23

Applications of Quantum Mechanics
Part II, 2003

Consider the two Hamiltonians

H1=p22m+V(r),H2=p22m+niZV(rn1a1n2a2n3a3),\begin{aligned} &H_{1}=\frac{\mathbf{p}^{2}}{2 m}+V(|\mathbf{r}|), \\ &H_{2}=\frac{\mathbf{p}^{2}}{2 m}+\sum_{n_{i} \in \mathbb{Z}} V\left(\left|\mathbf{r}-n_{1} \mathbf{a}_{1}-n_{2} \mathbf{a}_{2}-n_{3} \mathbf{a}_{3}\right|\right), \end{aligned}

where ai\mathbf{a}_{i} are three linearly independent vectors. For each of the Hamiltonians H=H1H=H_{1} and H=H2H=H_{2}, what are the symmetries of HH and what unitary operators UU are there such that UHU1=HU H U^{-1}=H ?

For H2\mathrm{H}_{2} derive Bloch's theorem. Suppose that H1H_{1} has energy eigenfunction ψ0(r)\psi_{0}(\mathbf{r}) with energy E0E_{0} where ψ0(r)NeKr\psi_{0}(\mathbf{r}) \sim N e^{-K r} for large r=rr=|\mathbf{r}|. Assume that Kai1K\left|\mathbf{a}_{i}\right| \gg 1 for each ii. In a suitable approximation derive the energy eigenvalues for H2H_{2} when EE0E \approx E_{0}. Verify that the energy eigenfunctions and energy eigenvalues satisfy Bloch's theorem. What happens if KaiK\left|\mathbf{a}_{i}\right| \rightarrow \infty ?