A1.17

Symmetries and Groups in Physics
Part II, 2003

(i) Define the character χ\chi of a representation DD of a finite group GG. Show that <χχ>=1<\chi \mid \chi>=1 if and only if DD is irreducible, where

<χχ>=1GgGχ(g)χ(g1)<\chi \mid \chi>=\frac{1}{|G|} \sum_{g \in G} \chi(g) \chi\left(g^{-1}\right)

If G=8|G|=8 and <χχ>=2<\chi \mid \chi>=2, what are the possible dimensions of the representation D?D ?

(ii) State and prove Schur's first and second lemmas.