A2.17

Mathematical Methods
Part II, 2003

(i) Explain how to solve the Fredholm integral equation of the second kind,

f(x)=μabK(x,t)f(t)dt+g(x)f(x)=\mu \int_{a}^{b} K(x, t) f(t) d t+g(x)

in the case where K(x,t)K(x, t) is of the separable (degenerate) form

K(x,t)=a1(x)b1(t)+a2(x)b2(t)K(x, t)=a_{1}(x) b_{1}(t)+a_{2}(x) b_{2}(t)

(ii) For what values of the real constants λ\lambda and AA does the equation

u(x)=λsinx+A0π(cosxcost+cos2xcos2t)u(t)dtu(x)=\lambda \sin x+A \int_{0}^{\pi}(\cos x \cos t+\cos 2 x \cos 2 t) u(t) d t

have (a) a unique solution, (b) no solution?