A1.2 B1.2

Principles of Dynamics
Part II, 2003

(i) Consider NN particles moving in 3 dimensions. The Cartesian coordinates of these particles are xA(t),A=1,,3Nx^{A}(t), A=1, \ldots, 3 N. Now consider an invertible change of coordinates to coordinates qa(xA,t),a=1,,3Nq^{a}\left(x^{A}, t\right), \quad a=1, \ldots, 3 N, so that one may express xAx^{A} as xA(qa,t)x^{A}\left(q^{a}, t\right). Show that the velocity of the system in Cartesian coordinates x˙A(t)\dot{x}^{A}(t) is given by the following expression:

x˙A(q˙a,qa,t)=b=13Nq˙bxAqb(qa,t)+xAt(qa,t)\dot{x}^{A}\left(\dot{q}^{a}, q^{a}, t\right)=\sum_{b=1}^{3 N} \dot{q}^{b} \frac{\partial x^{A}}{\partial q^{b}}\left(q^{a}, t\right)+\frac{\partial x^{A}}{\partial t}\left(q^{a}, t\right)

Furthermore, show that Lagrange's equations in the two coordinate systems are related via

Lqaddt(Lq˙a)=A=13NxAqa(LxAddtLx˙A)\frac{\partial L}{\partial q^{a}}-\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}^{a}}\right)=\sum_{A=1}^{3 N} \frac{\partial x^{A}}{\partial q^{a}}\left(\frac{\partial L}{\partial x^{A}}-\frac{d}{d t} \frac{\partial L}{\partial \dot{x}^{A}}\right)

(ii) Now consider the case where there are p<3Np<3 N constraints applied, f(xA,t)=f^{\ell}\left(x^{A}, t\right)= 0,=1,,p0, \ell=1, \ldots, p. By considering the f,=1,,pf^{\ell}, \ell=1, \ldots, p, and a set of independent coordinates qa,a=1,,3Npq^{a}, a=1, \ldots, 3 N-p, as a set of 3N3 N new coordinates, show that the Lagrange equations of the constrained system, i.e.

LxAddt(Lx˙A)+=1pλfxA=0,A=1,,3Nf=0,=1,,p\begin{gathered} \frac{\partial L}{\partial x^{A}}-\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{x}^{A}}\right)+\sum_{\ell=1}^{p} \lambda^{\ell} \frac{\partial f^{\ell}}{\partial x^{A}}=0, \quad A=1, \ldots, 3 N \\ f^{\ell}=0, \quad \ell=1, \ldots, p \end{gathered}

(where the λ\lambda^{\ell} are Lagrange multipliers) imply Lagrange's equations for the unconstrained coordinates, i.e.

Lqaddt(Lq˙a)=0,a=1,,3Np.\frac{\partial L}{\partial q^{a}}-\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}^{a}}\right)=0, \quad a=1, \ldots, 3 N-p .