A4.2

Principles of Dynamics
Part II, 2003

The action SS of a Hamiltonian system may be regarded as a function of the final coordinates qa,a=1,,Nq^{a}, a=1, \ldots, N, and the final time tt by setting

S(qa,t)=(qia,ti)(qa,t)dt[pa(t)q˙a(t)H(pa(t),qa(t),t)]S\left(q^{a}, t\right)=\int_{\left(q_{i}^{a}, t_{i}\right)}^{\left(q^{a}, t\right)} d t^{\prime}\left[p^{a}\left(t^{\prime}\right) \dot{q}^{a}\left(t^{\prime}\right)-H\left(p^{a}\left(t^{\prime}\right), q^{a}\left(t^{\prime}\right), t^{\prime}\right)\right]

where the initial coordinates qiaq_{i}^{a} and time tit_{i} are held fixed, and pa(t),qa(t)p^{a}\left(t^{\prime}\right), q^{a}\left(t^{\prime}\right) are the solutions to Hamilton's equations with Hamiltonian HH, satisfying qa(t)=qa,qa(ti)=qiaq^{a}(t)=q^{a}, q^{a}\left(t_{i}\right)=q_{i}^{a}.

(a) Show that under an infinitesimal change of the final coordinates δqa\delta q^{a} and time δt\delta t, the change in SS is

δS=pa(t)δqaH(pa(t),qa(t),t)δt\delta S=p_{a}(t) \delta q_{a}-H\left(p^{a}(t), q^{a}(t), t\right) \delta t

(b) Hence derive the Hamilton-Jacobi equation

St(qa,t)+H(Sqa(qa,t),qa,t)=0\frac{\partial S}{\partial t}\left(q^{a}, t\right)+H\left(\frac{\partial S}{\partial q^{a}}\left(q^{a}, t\right), q^{a}, t\right)=0

(c) If we can find a solution to ()(*),

S=S(qa,t;Pa),S=S\left(q^{a}, t ; P^{a}\right),

where PaP^{a} are NN integration constants, then we can use SS as a generating function of type III I, where

pa=Sqa,Qa=SPap^{a}=\frac{\partial S}{\partial q^{a}} \quad, \quad Q^{a}=-\frac{\partial S}{\partial P^{a}}

Show that the Hamiltonian KK in the new coordinates Qa,PaQ^{a}, P^{a} vanishes.

(d) Write down and solve the Hamilton-Jacobi equation for the one-dimensional simple harmonic oscillator, where H=12(p2+q2)H=\frac{1}{2}\left(p^{2}+q^{2}\right). Show the solution takes the form S(q,t;E)=W(q,E)EtS(q, t ; E)=W(q, E)-E t. Using this as a generating function FII(q,t,P)F_{I I}(q, t, P) show that the new coordinates Q,PQ, P are constants of the motion and give their physical interpretation.