A3.3 B3.2

Functional Analysis
Part II, 2003

(i) Let pp be a point of the compact interval I=[a,b]RI=[a, b] \subset \mathbb{R} and let δp:C(I)R\delta_{p}: C(I) \rightarrow \mathbb{R} be defined by δp(f)=f(p)\delta_{p}(f)=f(p). Show that

δp:(C(I),)R\delta_{p}:\left(C(I),\|\cdot\|_{\infty}\right) \rightarrow \mathbb{R}

is a continuous, linear map but that

δp:(C(I),1)R\delta_{p}:\left(C(I),\|\cdot\|_{1}\right) \rightarrow \mathbb{R}

is not continuous.

(ii) Consider the space C(n)(I)C^{(n)}(I) of nn-times continuously differentiable functions on the interval II. Write

f(n)=k=0nf(k) and f1(n)=r=0nf(k)1\|f\|_{\infty}^{(n)}=\sum_{k=0}^{n}\left\|f^{(k)}\right\|_{\infty} \quad \text { and } \quad\|f\|_{1}^{(n)}=\sum_{r=0}^{n}\left\|f^{(k)}\right\|_{1}

for fC(n)(I)f \in C^{(n)}(I). Show that (C(n)(I),(n))\left(C^{(n)}(I),\left\|^{\prime} \cdot\right\|_{\infty}^{(n)}\right) is a complete normed space. Is the space (C(n)(I),1(n))\left(C^{(n)}(I),\|\cdot\|_{1}^{(n)}\right) also complete?

Let f:IIf: I \rightarrow I be an nn-times continuously differentiable map and define

μf:C(n)(I)C(n)(I) by ggf.\mu_{f}: C^{(n)}(I) \rightarrow C^{(n)}(I) \quad \text { by } \quad g \mapsto g \circ f .

Show that μf\mu_{f} is a continuous linear map when C(n)(I)C^{(n)}(I) is equipped with the norm (n)\|\cdot\|_{\infty}^{(n)}.