A 1.51 . 5 \quad B 1.41 . 4 \quad

Electromagnetism
Part II, 2003

(i) Using Maxwell's equations as they apply to magnetostatics, show that the magnetic field B\mathbf{B} can be described in terms of a vector potential A\mathbf{A} on which the condition A=0\nabla \cdot \mathbf{A}=0 may be imposed. Hence derive an expression, valid at any point in space, for the vector potential due to a steady current distribution of density j\mathbf{j} that is non-zero only within a finite domain.

(ii) Verify that the vector potential A\mathbf{A} that you found in Part (i) satisfies A=0\nabla \cdot \mathbf{A}=0, and use it to obtain the Biot-Savart law expression for B\mathbf{B}. What is the corresponding result for a steady surface current distribution of density s\mathbf{s} ?

In cylindrical polar coordinates (ρ,ϕ,z)(\rho, \phi, z) (oriented so that eρ×eϕ=ez\mathbf{e}_{\rho} \times \mathbf{e}_{\phi}=\mathbf{e}_{z} ) a surface current

s=s(ρ)eϕ\mathbf{s}=s(\rho) \mathbf{e}_{\phi}

flows in the plane z=0z=0. Given that

s(ρ)={4I(1+a2ρ2)12aρ3a0 otherwise s(\rho)= \begin{cases}4 I\left(1+\frac{a^{2}}{\rho^{2}}\right)^{\frac{1}{2}} & a \leqslant \rho \leqslant 3 a \\ 0 & \text { otherwise }\end{cases}

show that the magnetic field at the point r=aez\mathbf{r}=a \mathbf{e}_{z} has zz-component

Bz=μ0Ilog5.B_{z}=\mu_{0} I \log 5 .

State, with justification, the full result for B\mathbf{B} at the point r=aez\mathbf{r}=a \mathbf{e}_{z}.