A2 .5. 5 \quad

Electromagnetism
Part II, 2003

(i) A plane electromagnetic wave has electric and magnetic fields

E=E0ei(krωt),B=B0ei(krωt)\mathbf{E}=\mathbf{E}_{0} e^{i(\mathbf{k} \cdot \mathbf{r}-\omega t)}, \quad \mathbf{B}=\mathbf{B}_{0} e^{i(\mathbf{k} \cdot \mathbf{r}-\omega t)}

for constant vectors E0,B0\mathbf{E}_{0}, \mathbf{B}_{0}, constant positive angular frequency ω\omega and constant wavevector k\mathbf{k}. Write down the vacuum Maxwell equations and show that they imply

kE0=0,kB0=0,ωB0=k×E0\mathbf{k} \cdot \mathbf{E}_{0}=0, \quad \mathbf{k} \cdot \mathbf{B}_{0}=0, \quad \omega \mathbf{B}_{0}=\mathbf{k} \times \mathbf{E}_{0}

Show also that k=ω/c|\mathbf{k}|=\omega / c, where cc is the speed of light.

(ii) State the boundary conditions on E\mathbf{E} and B\mathbf{B} at the surface SS of a perfect conductor. Let σ\sigma be the surface charge density and s the surface current density on SS. How are σ\sigma and s\mathbf{s} related to E\mathbf{E} and B\mathbf{B} ?

A plane electromagnetic wave is incident from the half-space x<0x<0 upon the surface x=0x=0 of a perfectly conducting medium in x>0x>0. Given that the electric and magnetic fields of the incident wave take the form ()(*) with

k=k(cosθ,sinθ,0)(0<θ<π/2)\mathbf{k}=k(\cos \theta, \sin \theta, 0) \quad(0<\theta<\pi / 2)

and

E0=λ(sinθ,cosθ,0),\mathbf{E}_{0}=\lambda(-\sin \theta, \cos \theta, 0),

find B0\mathbf{B}_{0}.

Reflection of the incident wave at x=0x=0 produces a reflected wave with electric field

E0ei(krωt)\mathbf{E}_{0}^{\prime} e^{i\left(\mathbf{k}^{\prime} \cdot \mathbf{r}-\omega t\right)}

with

k=k(cosθ,sinθ,0)\mathbf{k}^{\prime}=k(-\cos \theta, \sin \theta, 0)

By considering the boundary conditions at x=0x=0 on the total electric field, show that

E0=λ(sinθ,cosθ,0)\mathbf{E}_{0}^{\prime}=-\lambda(\sin \theta, \cos \theta, 0)

Show further that the electric charge density on the surface x=0x=0 takes the form

σ=σ0eik(ysinθct)\sigma=\sigma_{0} e^{i k(y \sin \theta-c t)}

for a constant σ0\sigma_{0} that you should determine. Find the magnetic field of the reflected wave and hence the surface current density s\mathbf{s} on the surface x=0x=0.