A2.11 B2.16
Part II, 2003
(i) Outline briefly the Bayesian approach to hypothesis testing based on Bayes factors.
(ii) Let be independent random variables, both uniformly distributed on . Find a minimal sufficient statistic for . Let , . Show that is ancilliary and explain why the Conditionality Principle would lead to inference about being drawn from the conditional distribution of given . Find the form of this conditional distribution.