A1.11 B1.16
(i) In the context of a single-period financial market with traded assets, what is an arbitrage? What is an equivalent martingale measure?
A simple single-period financial market contains two assets, (a bond), and (a share). The period can be good, bad, or indifferent, with probabilities each. At the beginning of the period, time 0 , both assets are worth 1 , i.e.
and at the end of the period, time 1 , the share is worth
where . The bond is always worth 1 at the end of the period. Show that there is no arbitrage in this market if and only if .
(ii) An agent with strictly increasing strictly concave utility has wealth at time 0 , and wishes to invest his wealth in shares and bonds so as to maximise his expected utility of wealth at time 1 . Explain how the solution to his optimisation problem generates an equivalent martingale measure.
Assume now that , and . Characterise all equivalent martingale measures for this problem. Characterise all equivalent martingale measures which arise as solutions of an agent's optimisation problem.
Calculate the largest and smallest possible prices for a European call option with strike 1 and expiry 1, as the pricing measure ranges over all equivalent martingale measures. Calculate the corresponding bounds when the pricing measure is restricted to the set arising from expected-utility-maximising agents' optimisation problems.