A2.13 B2.21

Foundations of Quantum Mechanics
Part II, 2003

(i) Define the Heisenberg picture of quantum mechanics in relation to the Schrödinger picture. Explain how the two pictures provide equivalent descriptions of observable results.

Derive the equation of motion for an operator in the Heisenberg picture.

(ii) For a particle moving in one dimension, the Hamiltonian is

H^=p^22m+V(x^),\hat{H}=\frac{\hat{p}^{2}}{2 m}+V(\hat{x}),

where x^\hat{x} and p^\hat{p} are the position and momentum operators, and the state vector is Ψ|\Psi\rangle.

Eigenstates of x^\hat{x} and p^\hat{p} satisfy

xp=(12π)1/2eipx/,xx=δ(xx),pp=δ(pp).\langle x \mid p\rangle=\left(\frac{1}{2 \pi \hbar}\right)^{1 / 2} e^{i p x / \hbar}, \quad\left\langle x \mid x^{\prime}\right\rangle=\delta\left(x-x^{\prime}\right), \quad\left\langle p \mid p^{\prime}\right\rangle=\delta\left(p-p^{\prime}\right) .

Use standard methods in the Dirac formalism to show that

xp^x=ixδ(xx)px^p=ipδ(pp)\begin{aligned} &\left\langle x|\hat{p}| x^{\prime}\right\rangle=-i \hbar \frac{\partial}{\partial x} \delta\left(x-x^{\prime}\right) \\ &\left\langle p|\hat{x}| p^{\prime}\right\rangle=i \hbar \frac{\partial}{\partial p} \delta\left(p-p^{\prime}\right) \end{aligned}

Calculate xH^x\left\langle x|\hat{H}| x^{\prime}\right\rangle and express xp^Ψ,xH^Ψ\langle x|\hat{p}| \Psi\rangle,\langle x|\hat{H}| \Psi\rangle in terms of the position space wave function Ψ(x)\Psi(x).

Compute the momentum space Hamiltonian for the harmonic oscillator with potential V(x^)=12mω2x^2V(\hat{x})=\frac{1}{2} m \omega^{2} \hat{x}^{2}.