A3.13 B3.21

Foundations of Quantum Mechanics
Part II, 2003

(i) What are the commutation relations satisfied by the components of an angular momentum vector J\mathbf{J} ? State the possible eigenvalues of the component J3J_{3} when J2\mathbf{J}^{2} has eigenvalue j(j+1)2j(j+1) \hbar^{2}.

Describe how the Pauli matrices

σ1=(0110),σ2=(0ii0),σ3=(1001)\sigma_{1}=\left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right), \quad \sigma_{2}=\left(\begin{array}{cc} 0 & -i \\ i & 0 \end{array}\right), \quad \sigma_{3}=\left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right)

are used to construct the components of the angular momentum vector S\mathbf{S} for a spin 12\frac{1}{2} system. Show that they obey the required commutation relations.

Show that S1,S2S_{1}, S_{2} and S3S_{3} each have eigenvalues ±12\pm \frac{1}{2} \hbar. Verify that S2\mathbf{S}^{2} has eigenvalue 342.\frac{3}{4} \hbar^{2} .

(ii) Let J\mathbf{J} and jm|j m\rangle denote the standard operators and state vectors of angular momentum theory. Assume units where =1\hbar=1. Consider the operator

U(θ)=eiθJ2U(\theta)=e^{-i \theta J_{2}}

Show that

U(θ)J1U(θ)1=cosθJ1sinθJ3U(θ)J3U(θ)1=sinθJ1+cosθJ3\begin{aligned} &U(\theta) J_{1} U(\theta)^{-1}=\cos \theta J_{1}-\sin \theta J_{3} \\ &U(\theta) J_{3} U(\theta)^{-1}=\sin \theta J_{1}+\cos \theta J_{3} \end{aligned}

Show that the state vectors U(π2)jmU\left(\frac{\pi}{2}\right)|j m\rangle are eigenvectors of J1J_{1}. Suppose that J1J_{1} is measured for a system in the state jm|j m\rangle; show that the probability that the result is mm^{\prime} equals

jmeiπ2J2jm2\left|\left\langle j m^{\prime}\left|e^{i \frac{\pi}{2} J_{2}}\right| j m\right\rangle\right|^{2}

Consider the case j=m=12j=m=\frac{1}{2}. Evaluate the probability that the measurement of J1J_{1} will result in m=12m^{\prime}=-\frac{1}{2}.