B2.9

Number Fields
Part II, 2004

Let mm be an integer greater than 1 and let ζm\zeta_{m} denote a primitive mm-th root of unity in C\mathbb{C}. Let O\mathcal{O} be the ring of integers of Q(ζm)\mathbb{Q}\left(\zeta_{m}\right). If pp is a prime number with (p,m)=1(p, m)=1, outline the proof that

pO=1r,p \mathcal{O}=\wp_{1} \cdots \wp_{r},

where the i\wp_{i} are distinct prime ideals of O\mathcal{O}, and r=φ(m)/fr=\varphi(m) / f with ff the least integer 1\geqslant 1 such that pf1modmp^{f} \equiv 1 \bmod m. [Here φ(m)\varphi(m) is the Euler φ\varphi-function of m]\left.m\right].

Determine the factorisations of 2,3,52,3,5 and 11 in Q(ζ5)\mathbb{Q}\left(\zeta_{5}\right). For each integer n1n \geqslant 1, prove that, in the ring of integers of Q(ζ5n)\mathbb{Q}\left(\zeta_{5^{n}}\right), there is a unique prime ideal dividing 2 , and a unique prime ideal dividing 3 .