B1.10

Hilbert Spaces
Part II, 2004

Suppose that (en)\left(e_{n}\right) and (fm)\left(f_{m}\right) are orthonormal bases of a Hilbert space HH and that TL(H)T \in L(H).

(a) Show that n=1T(en)2=m=1T(fm)2\sum_{n=1}^{\infty}\left\|T\left(e_{n}\right)\right\|^{2}=\sum_{m=1}^{\infty}\left\|T^{*}\left(f_{m}\right)\right\|^{2}.

(b) Show that n=1T(en)2=m=1T(fm)2\sum_{n=1}^{\infty}\left\|T\left(e_{n}\right)\right\|^{2}=\sum_{m=1}^{\infty}\left\|T\left(f_{m}\right)\right\|^{2}.

TL(H)T \in L(H) is a Hilbert-Schmidt operator if n=1T(en)2<\sum_{n=1}^{\infty}\left\|T\left(e_{n}\right)\right\|^{2}<\infty for some (and hence every) orthonormal basis (en)\left(e_{n}\right).

(c) Show that the set HS of Hilbert-Schmidt operators forms a linear subspace of L(H)L(H), and that T,S=n=1T(en),S(en)\langle T, S\rangle=\sum_{n=1}^{\infty}\left\langle T\left(e_{n}\right), S\left(e_{n}\right)\right\rangle is an inner product on HSH S; show that this inner product does not depend on the choice of the orthonormal basis (en)\left(e_{n}\right).

(d) Let THS\|T\|_{H S} be the corresponding norm. Show that TTHS\|T\| \leqslant\|T\|_{H S}, and show that a Hilbert-Schmidt operator is compact.