B1.11

Riemann Surfaces
Part II, 2004

Let τ\tau be a fixed complex number with positive imaginary part. For zCz \in \mathbb{C}, define

v(z)=n=exp(πiτn2+2πin(z+12)).v(z)=\sum_{n=-\infty}^{\infty} \exp \left(\pi i \tau n^{2}+2 \pi i n\left(z+\frac{1}{2}\right)\right) .

Prove the identities

v(z+1)=v(z),v(z)=v(z),v(z+τ)=exp(πiτ2πiz)v(z)v(z+1)=v(z), \quad v(-z)=v(z), \quad v(z+\tau)=-\exp (-\pi i \tau-2 \pi i z) \cdot v(z)

and deduce that v(τ/2)=0v(\tau / 2)=0. Show further that τ/2\tau / 2 is the only zero of vv in the parallelogram PP with vertices 1/2,1/2,1/2+τ,1/2+τ-1 / 2,1 / 2,1 / 2+\tau,-1 / 2+\tau.

[You may assume that vv is holomorphic on C\mathbb{C}.]

Now let {a1,,ak}\left\{a_{1}, \ldots, a_{k}\right\} and {b1,,bk}\left\{b_{1}, \ldots, b_{k}\right\} be two sets of complex numbers and

f(z)=j=1kv(zaj)v(zbj)f(z)=\prod_{j=1}^{k} \frac{v\left(z-a_{j}\right)}{v\left(z-b_{j}\right)}

Prove that ff is a doubly-periodic meromorphic function, with periods 1 and τ\tau, if and only if j=1k(ajbj)\sum_{j=1}^{k}\left(a_{j}-b_{j}\right) is an integer.