B4.8

Riemann Surfaces
Part II, 2004

Let Λ\Lambda be a lattice in C,Λ=Zω1+Zω2\mathbb{C}, \Lambda=\mathbb{Z} \omega_{1}+\mathbb{Z} \omega_{2}, where ω1,ω20\omega_{1}, \omega_{2} \neq 0 and ω1/ω2R\omega_{1} / \omega_{2} \notin \mathbb{R}. By constructing an appropriate family of charts, show that the torus C/Λ\mathbb{C} / \Lambda is a Riemann surface and that the natural projection π:zCz+ΛC/Λ\pi: z \in \mathbb{C} \rightarrow z+\Lambda \in \mathbb{C} / \Lambda is a holomorphic map.

[You may assume without proof any known topological properties of C/Λ\mathbb{C} / \Lambda.]

Let Λ=Zω1+Zω2\Lambda^{\prime}=\mathbb{Z} \omega_{1}^{\prime}+\mathbb{Z} \omega_{2}^{\prime} be another lattice in C\mathbb{C}, with ω1,ω20\omega_{1}^{\prime}, \omega_{2}^{\prime} \neq 0 and ω1/ω2R\omega_{1}^{\prime} / \omega_{2}^{\prime} \notin \mathbb{R}. By considering paths from 0 to an arbitrary zCz \in \mathbb{C}, show that if f:C/ΛC/Λf: \mathbb{C} / \Lambda \rightarrow \mathbb{C} / \Lambda^{\prime} is a conformal equivalence then

f(z+Λ)=(az+b)+Λ for some a,b,C, with a0f(z+\Lambda)=(a z+b)+\Lambda^{\prime} \quad \text { for some } a, b, \in \mathbb{C}, \text { with } a \neq 0

[Any form of the Monodromy Theorem and basic results on the lifts of paths may be used without proof, provided that these are correctly stated. You may assume without proof that every injective holomorphic function F:CCF: \mathbb{C} \rightarrow \mathbb{C} is of the form F(z)=az+bF(z)=a z+b, for some a,bCa, b \in \mathbb{C}.]

Give an explicit example of a non-constant holomorphic map C/ΛC/Λ\mathbb{C} / \Lambda \rightarrow \mathbb{C} / \Lambda that is not a conformal equivalence.

Part II 2004