B2.12

Probability and Measure
Part II, 2004

Let (Ω,F,μ)(\Omega, \mathcal{F}, \mu) be a measure space and let 1p1 \leqslant p \leqslant \infty.

(a) Define the LpL^{p}-norm fp\|f\|_{p} of a measurable function f:ΩRf: \Omega \rightarrow \mathbb{R}, and define the space Lp(Ω,F,μ).L^{p}(\Omega, \mathcal{F}, \mu) .

(b) Prove Minkowski's inequality:

f+gpfp+gp for f,gLp(Ω,F,μ),1p\|f+g\|_{p} \leqslant\|f\|_{p}+\|g\|_{p} \text { for } f, g \in L^{p}(\Omega, \mathcal{F}, \mu), 1 \leqslant p \leqslant \infty

[You may use Hölder's inequality without proof provided it is clearly stated.]

(c) Explain what is meant by saying that Lp(Ω,F,μ)L^{p}(\Omega, \mathcal{F}, \mu) is complete. Show that L(Ω,F,μ)L^{\infty}(\Omega, \mathcal{F}, \mu) is complete.

(d) Suppose that {fn:n1}\left\{f_{n}: n \geqslant 1\right\} is a sequence of measurable functions satisfying fnp0\left\|f_{n}\right\|_{p} \rightarrow 0 as nn \rightarrow \infty.

(i) Show that if p=p=\infty, then fn0f_{n} \rightarrow 0 almost everywhere.

(ii) When 1p<1 \leqslant p<\infty, give an example of a measure space (Ω,F,μ)(\Omega, \mathcal{F}, \mu) and such a sequence {fn}\left\{f_{n}\right\} such that, for all ωΩ,fn(ω)0\omega \in \Omega, f_{n}(\omega) \nrightarrow 0 as nn \rightarrow \infty.