B1.18

Partial Differential Equations
Part II, 2004

(a) State and prove the Mean Value Theorem for harmonic functions.

(b) Let u0u \geqslant 0 be a harmonic function on an open set ΩRn\Omega \subset \mathbb{R}^{n}. Let B(x,a)={yB(x, a)=\{y \in Rn:xy<a}\left.\mathbb{R}^{n}:|x-y|<a\right\}. For any xΩx \in \Omega and for any r>0r>0 such that B(x,4r)ΩB(x, 4 r) \subset \Omega, show that

sup{yB(x,r)}u(y)3ninf{yB(x,r)}u(y).\sup _{\{y \in B(x, r)\}} u(y) \leqslant 3^{n} \inf _{\{y \in B(x, r)\}} u(y) .