B2.18

Partial Differential Equations
Part II, 2004

(a) State and prove the Duhamel principle for the wave equation.

(b) Let uC2([0,T]×Rn)u \in C^{2}\left([0, T] \times \mathbb{R}^{n}\right) be a solution of

utt+utΔu+u=0u_{t t}+u_{t}-\Delta u+u=0

where Δ\Delta is taken in the variables xRnx \in \mathbb{R}^{n} and ut=tuu_{t}=\partial_{t} u etc.

Using an 'energy method', or otherwise, show that, if u=ut=0u=u_{t}=0 on the set {t=0,xx0t0}\left\{t=0,\left|x-x_{0}\right| \leqslant t_{0}\right\} for some (t0,x0)[0,T]×Rn\left(t_{0}, x_{0}\right) \in[0, T] \times \mathbb{R}^{n}, then uu vanishes on the region K(t,x)={(t,x):0tt0,xx0t0t}K(t, x)=\left\{(t, x): 0 \leqslant t \leqslant t_{0},\left|x-x_{0}\right| \leqslant t_{0}-t\right\}. Hence deduce uniqueness for the Cauchy problem for the above PDE with Schwartz initial data.