B1.19

Methods of Mathematical Physics
Part II, 2004

State the convolution theorem for Laplace transforms.

The temperature T(x,t)T(x, t) in a semi-infinite rod satisfies the heat equation

2Tx2=1kTt,x0,t0\frac{\partial^{2} T}{\partial x^{2}}=\frac{1}{k} \frac{\partial T}{\partial t}, \quad x \geq 0, t \geq 0

and the conditions T(x,0)=0T(x, 0)=0 for x0,T(0,t)=f(t)x \geq 0, T(0, t)=f(t) for t0t \geq 0 and T(x,t)0T(x, t) \rightarrow 0 as xx \rightarrow \infty. Show that

T(x,t)=0tf(τ)G(x,tτ)dτT(x, t)=\int_{0}^{t} f(\tau) G(x, t-\tau) d \tau

where

G(x,t)=x24πkt3ex2/4ktG(x, t)=\sqrt{\frac{x^{2}}{4 \pi k t^{3}}} e^{-x^{2} / 4 k t}