B2.19

Methods of Mathematical Physics
Part II, 2004

(a) The Beta function is defined by

B(p,q)=01xp1(1x)q1dx\mathrm{B}(p, q)=\int_{0}^{1} x^{p-1}(1-x)^{q-1} d x

Show that

B(p,q)=1xpq(x1)q1dx\mathrm{B}(p, q)=\int_{1}^{\infty} x^{-p-q}(x-1)^{q-1} d x

(b) The function J(p,q)J(p, q) is defined by

J(p,q)=γtp1(1t)q1dtJ(p, q)=\int_{\gamma} t^{p-1}(1-t)^{q-1} d t

where the integrand has a branch cut along the positive real axis. Just above the cut, argt=0\arg t=0. For t>1t>1 just above the cut, arg (1t)=π(1-t)=-\pi. The contour γ\gamma runs from t=e2πit=\infty e^{2 \pi i}, round the origin in the negative sense, to t=t=\infty (i.e. the contour is a reflection of the usual Hankel contour). What restriction must be placed on pp and qq for the integral to converge?

By evaluating J(p,q)J(p, q) in two ways, show that

(1e2πip)B(p,q)+(eπi(q1)eπi(2p+q1))B(1pq,q)=0,\left(1-e^{2 \pi i p}\right) \mathrm{B}(p, q)+\left(e^{-\pi i(q-1)}-e^{\pi i(2 p+q-1)}\right) \mathrm{B}(1-p-q, q)=0,

where pp and qq are any non-integer complex numbers.

Using the identity

B(p,q)=Γ(p)Γ(q)Γ(p+q)B(p, q)=\frac{\Gamma(p) \Gamma(q)}{\Gamma(p+q)}

deduce that

Γ(p)Γ(1p)sin(πp)=Γ(p+q)Γ(1pq)sin[π(1pq)]\Gamma(p) \Gamma(1-p) \sin (\pi p)=\Gamma(p+q) \Gamma(1-p-q) \sin [\pi(1-p-q)]

and hence that

π=Γ(q)Γ(1q)sin[π(1q)]\pi=\Gamma(q) \Gamma(1-q) \sin [\pi(1-q)]