B1.21

Electrodynamics
Part II, 2004

The Maxwell field tensor is

Fab=(0ExEyEzEx0BzByEyBz0BxEzByBx0)F^{a b}=\left(\begin{array}{cccc} 0 & -E_{x} & -E_{y} & -E_{z} \\ E_{x} & 0 & -B_{z} & B_{y} \\ E_{y} & B_{z} & 0 & -B_{x} \\ E_{z} & -B_{y} & B_{x} & 0 \end{array}\right)

and the 4-current density is Ja=(ρ,j)J^{a}=(\rho, \mathbf{j}). Write down the 3-vector form of Maxwell's equations and the continuity equation, and obtain the equivalent 4-vector equations.

Consider a Lorentz transformation from a frame F\mathcal{F} to a frame F\mathcal{F}^{\prime} moving with relative (coordinate) velocity vv in the xx-direction

Lba=(γγv00γvγ0000100001)L_{b}^{a}=\left(\begin{array}{cccc} \gamma & \gamma v & 0 & 0 \\ \gamma v & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right)

where γ=1/1v2\gamma=1 / \sqrt{1-v^{2}}. Obtain the transformation laws for E\mathbf{E} and B\mathbf{B}. Which quantities, quadratic in E\mathbf{E} and B\mathbf{B}, are Lorentz scalars?