B2.23

Applications of Quantum Mechanics
Part II, 2004

The wave function for a single particle with a potential V(r)V(r) has the asymptotic form for large rr

ψ(r,θ)eikrcosθ+f(θ)eikrr.\psi(r, \theta) \sim e^{i k r \cos \theta}+f(\theta) \frac{e^{i k r}}{r} .

How is f(θ)f(\theta) related to observable quantities? Show how f(θ)f(\theta) can be expressed in terms of phase shifts δ(k)\delta_{\ell}(k) for =0,1,2,\ell=0,1,2, \ldots..

Assume that V(r)=0V(r)=0 for rar \geq a, and let R(r)R_{\ell}(r) denote the solution of the radial Schrödinger equation, regular at r=0r=0, with energy 2k2/2m\hbar^{2} k^{2} / 2 m and angular momentum \ell. Let N(k)=aR(a)/R(a)N_{\ell}(k)=a R_{\ell}^{\prime}(a) / R_{\ell}(a). Show that

tanδ(k)=N(k)j(ka)kaj(ka)N(k)n(ka)kan(ka).\tan \delta_{\ell}(k)=\frac{N_{\ell}(k) j_{\ell}(k a)-k a j_{\ell}^{\prime}(k a)}{N_{\ell}(k) n_{\ell}(k a)-k a n_{\ell}^{\prime}(k a)} .

Assuming that N(k)N_{\ell}(k) is a smooth function for k0k \approx 0, determine the expected behaviour of δ(k)\delta_{\ell}(k) as k0k \rightarrow 0. Show that for k0k \rightarrow 0 then f(θ)cf(\theta) \rightarrow c, with cc a constant, and determine cc in terms of N0(0)N_{0}(0).

[For V=0V=0 the two independent solutions of the radial Schrödinger equation are j(kr)j_{\ell}(k r) and n(kr)n_{\ell}(k r) with

j(ρ)1ρsin(ρ12π),n(ρ)1ρcos(ρ12π) as ρj(ρ)ρ,n(ρ)ρ1 as ρ0eiρcosθ==0(2+1)ij(ρ)P(cosθ),j0(ρ)=sinρρ,n0(ρ)=cosρρ\begin{aligned} j_{\ell}(\rho) & \sim \frac{1}{\rho} \sin \left(\rho-\frac{1}{2} \ell \pi\right), n_{\ell}(\rho) \sim-\frac{1}{\rho} \cos \left(\rho-\frac{1}{2} \ell \pi\right) \text { as } \rho \rightarrow \\ j_{\ell}(\rho) & \propto \rho^{\ell}, n_{\ell}(\rho) \propto \rho^{-\ell-1} \text { as } \rho \rightarrow 0 \\ e^{i \rho \cos \theta} &=\sum_{\ell=0}^{\infty}(2 \ell+1) i^{\ell} j_{\ell}(\rho) P_{\ell}(\cos \theta), \\ j_{0}(\rho) &=\frac{\sin \rho}{\rho}, \quad n_{0}(\rho)=-\frac{\cos \rho}{\rho} \end{aligned}