B3.23

Applications of Quantum Mechanics
Part II, 2004

For a periodic potential V(r)=V(r+)V(\mathbf{r})=V(\mathbf{r}+\ell), where \ell is a lattice vector, show that we may write

V(r)=gageigr,ag=agV(\mathbf{r})=\sum_{\mathbf{g}} a_{\mathbf{g}} e^{i \mathbf{g} \cdot \mathbf{r}}, \quad a_{\mathbf{g}}^{*}=a_{-\mathbf{g}}

where the set of gg should be defined.

Show how to construct general wave functions satisfying ψ(r+)=eikψ(r)\psi(\mathbf{r}+\boldsymbol{\ell})=e^{i \mathbf{k} \cdot \boldsymbol{\ell}} \psi(\mathbf{r}) in terms of free plane-wave wave-functions.

Show that the nearly free electron model gives an energy gap 2ag2\left|a_{\mathbf{g}}\right| when k=12g\mathbf{k}=\frac{1}{2} \mathbf{g}.

Explain why, for a periodic potential, the allowed energies form bands En(k)E_{n}(\mathbf{k}) where k\mathbf{k} may be restricted to a single Brillouin zone. Show that En(k)=En(k+g)E_{n}(\mathbf{k})=E_{n}(\mathbf{k}+\mathbf{g}) if k\mathbf{k} and k+g\mathbf{k}+\mathbf{g} belong to the Brillouin zone.

How are bands related to whether a material is a conductor or an insulator?