A3.15

Symmetries and Groups in Physics
Part II, 2004

(i) Show that the character of an SU(2)S U(2) transformation in the 2l+12 l+1 dimensional irreducible representation dld_{l} is given by

χl(θ)=sin[(l+1/2)θ]sin[θ/2]\chi_{l}(\theta)=\frac{\sin [(l+1 / 2) \theta]}{\sin [\theta / 2]}

What are the characters of irreducible SO(3)S O(3) representations?

(ii) The isospin representation of two-particle states of pions and nucleons is spanned by the basis T={π+p,π+n,π0p,π0n,πp,πn}T=\left\{\left|\pi^{+} p\right\rangle,\left|\pi^{+} n\right\rangle,\left|\pi^{0} p\right\rangle,\left|\pi^{0} n\right\rangle,\left|\pi^{-} p\right\rangle,\left|\pi^{-} n\right\rangle\right\}.

Pions form an isospin triplet with π+=1,1,π0=1,0,π=1,1\pi^{+}=|1,1\rangle, \pi^{0}=|1,0\rangle, \pi^{-}=|1,-1\rangle; and nucleons form an isospin doublet with p=1/2,1/2,n=1/2,1/2p=|1 / 2,1 / 2\rangle, n=|1 / 2,-1 / 2\rangle. Find the values of the isospin for the irreducible representations into which TT will decompose.

Using Ij,m=(jm+1)(j+m)j,m1I_{-}|j, m\rangle=\sqrt{(j-m+1)(j+m)}|j, m-1\rangle, write the states of the basis TT in terms of isospin states.

Consider the transitions

π+pπ+pπpπpπpπ0n\begin{array}{ll} \pi^{+} p & \rightarrow \pi^{+} p \\ \pi^{-} p & \rightarrow \pi^{-} p \\ \pi^{-} p & \rightarrow \pi^{0} n \end{array}

and show that their amplitudes satisfy a linear relation.