A1.17

Theoretical Geophysics
Part II, 2004

(i) What is the polarisation P\mathbf{P} and slowness s\mathbf{s} of the time-harmonic plane elastic wave u=Aexp[i(kxωt)]?\mathbf{u}=\mathbf{A} \exp [i(\mathbf{k} \cdot \mathbf{x}-\omega t)] ?

Use the equation of motion for an isotropic homogenous elastic medium,

ρ2ut2=(λ+2μ)(u)μ(u)\rho \frac{\partial^{2} \mathbf{u}}{\partial t^{2}}=(\lambda+2 \mu) \boldsymbol{\nabla}(\boldsymbol{\nabla} \cdot \mathbf{u})-\mu \boldsymbol{\nabla} \wedge(\boldsymbol{\nabla} \wedge \mathbf{u})

to show that ss\mathbf{s} \cdot \mathbf{s} takes one of two values and obtain the corresponding conditions on P\mathbf{P}. If s\mathbf{s} is complex show that Re(s)Im(s)=0\operatorname{Re}(\mathbf{s}) \cdot \operatorname{Im}(\mathbf{s})=0.

(ii) A homogeneous elastic layer of uniform thickness h,Sh, S-wave speed β1\beta_{1} and shear modulus μ1\mu_{1} has a stress-free surface z=0z=0 and overlies a lower layer of infinite depth, SS-wave speed β2(>β1)\beta_{2}\left(>\beta_{1}\right) and shear modulus μ2\mu_{2}. Show that the horizontal phase speed cc of trapped Love waves satisfies β1<c<β2\beta_{1}<c<\beta_{2}. Show further that

tan[(c2β121)1/2kh]=μ2μ1(1c2/β22c2/β121)1/2\tan \left[\left(\frac{c^{2}}{\beta_{1}^{2}}-1\right)^{1 / 2} k h\right]=\frac{\mu_{2}}{\mu_{1}}\left(\frac{1-c^{2} / \beta_{2}^{2}}{c^{2} / \beta_{1}^{2}-1}\right)^{1 / 2}

where kk is the horizontal wavenumber.

Assuming that (1) can be solved to give c(k)c(k), explain how to obtain the propagation speed of a pulse of Love waves with wavenumber kk.